Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3
نویسندگان
چکیده
Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.
منابع مشابه
Draft Genome Sequence of the Plant Growth-Promoting Cupriavidus gilardii Strain JZ4 Isolated from the Desert Plant Tribulus terrestris
We isolated the plant endophytic bacterium Cupriavidus gilardii strain JZ4 from the roots of the desert plant Tribulus terrestris, collected from the Jizan region, Saudi Arabia. We report here the draft genome sequence of JZ4, together with several enzymes related to plant growth-promoting activity, environmental adaption, and antifungal activity.
متن کاملDraft Genome Sequence of Cupriavidus sp. Strain SK-3, a 4-Chlorobiphenyl- and 4-Clorobenzoic Acid-Degrading Bacterium
We report the draft genome sequence of Cupriavidus sp. strain SK-3, which can use 4-chlorobiphenyl and 4-clorobenzoic acid as the sole carbon source for growth. The draft genome sequence allowed the study of the polychlorinated biphenyl degradation mechanism and the recharacterization of the strain SK-3 as a Cupriavidus species.
متن کاملWhole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.
Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
متن کاملErratum for Vilo et al., Draft Genome Sequence of Cupriavidus sp. Strain SK-3, a 4-Chlorobiphenyl- and 4-Chlorobenzoic Acid-Degrading Bacterium
V olume 2, no. 4, e00664-14, 2014. Page 1: The article title should read as given above and the word " clorobenzoic " should read " chlorobenzoic " in the abstract and main text.
متن کاملDraft Genome Sequence of the Polychlorinated Biphenyl-Degrading Bacterium Cupriavidus basilensis KF708 (NBRC 110671) Isolated from Biphenyl-Contaminated Soil
We report the draft genome sequence of Cupriavidus basilensis KF708 (NBRC 110671), which utilizes biphenyl as a sole carbon source and degrades polychlorinated biphenyls (PCBs). The KF708 strain possesses genes for biphenyl catabolism and other genes involved in various aromatic compounds.
متن کامل